Racing with COLDfire 

 

Imagine a racer and crew who normally tear down their engine after every race or two, suddenly discovering a process that will allow them to safely go up to 10 races or more with out a major rebuild. 

Getting a full season of hassle free racing out of their car and engine. What is a process like that worth to you??

COLDfire is a space-age process that according to its users, "significantly" extends the productive life of materials, such as ferrous and non-ferrous metals, metallic alloys, carbides, plastics (including Nylon on Teflon) and ceramics. The most obvious is for steel and alloys of steel. 

The process also works on aluminum and bronze casting-which have built-in stress due to the shrinkage of molten metal after it cools in the molds. With a change in density-dimensional stabilization and increased lubricity and parts stabilization by the COLDfire Process. It returns the metal to its original state, bonds it, making it more durable for tighter tolerance of machining.

The COLDfire Process works by improving the physical and mechanical properties of various materials - actually transforming chemical microstructure into a new, more refined, uniform substructure that transfers a new "kind" of toughness into the material. The material is cooled to minus 350 degrees F (- 215 degrees C) and heated to + 350 degrees F (+ 180 degrees C). The process is performed to a precise, computer controlled time table in 12 to 24 hours. 

The process works on crank-shafts, camshafts, cylinder heads, connecting rods, push rods, rocker arms,  blower, turbo parts, valves, valves springs, pistons, rings, pins, ring/pinion, axles, drive lines, u-joints, brake parts, steering parts and entire engine. This should increase your horse-power and RPM by 6% or more. Do not forget the spark-plugs (works great). 

Your "PAYBACK" is cost saving that adds to less expense on parts, down-time and labour time.

With increased durability there is a much better chance you will finish the race. With finishing the race, comes more chances to win. 

With the implementation of COLDfire you can remain competitive and have more times in the winners' circle.

Benefits of COLDfire Thermal Cycling

  • STRESS RELIEF    

  • IMPROVED WEAR RESISTANCE

  • CHANGE IN DENSITY

  • DIMENSIONAL STABILIZATION

  • INCREASED LUBRICITY AND PART STABILIZATION CONTROL WEAR BY PRODUCING A TOUGH SURFACE

  • RESIST PENETRATION OF SURFACE BY OTHER PARTICLES

  • INCREASED DURABILITY

  • CLOSES GRAIN STRUCTURE OF FERROUS METALS

  • STRESS RELIEVES ALLOYS AND ALUMINUM FOR TIGHTER TOLERANCE MACHINING.

Our COLDfire Thermal Cycling Machine is fully computer controlled with data logging capability.

 

Engine Components

With our Patented Cryogenic Thermal Cycling Process, your engine components will out live your competitions. Cryogenic Thermal Cycling increases durability and reduces wear and vibration. This means you will get more horsepower longer engine life and fewer breakdowns as well as a more consistant performance from your engine.

You too can take advantage of the same Cryogenic Thermal Cycling enhancement developed by COLDfire, and used by Nascar, Le Mans, INDY, IRL, CART, SCCA, NHRA, LEGENDS, AMA, WERA, ADBA, AHDRA, WKA, IKA & NKA teams around the world with tremendous results.

Our Patented Cryogenic Thermal Cycling Process, although derived from Conventional Cryogenic Tempering and Heat treatment tempering has been developed over the last 5 years and is proven far more effective than conventional Cryogenics.

   Common Applications
 * NOTICE:  COLDfire only treats entire   disassembled engines, not just components and parts.

  • Crank Shafts
  • Cam Shafts
  • Valves & Valve Springs
  • Rocker Arms
  • Push Rods
  • Engine Blocks
  • Heads
  • Pistons and Rings
  • Connecting Rods
  • Bearings
  • Entire Drive Train!
     

Brake Components

Coldfire's Cryogenic Thermal Cycling Process gives you better performance and more than doubles the life of your rotors.... Guaranteed!

Three times the life
Stop Warpage
Stop wear
Decreases Vibration and microcracking by 30%

The most Technically Advanced Rotors available. These Rotors undergo a special deep Cryogenic Thermal Cycling Process. This process involves cycling the temperatures to extremes as low as -320F and to as high as 400F. This process actually alters the composition of the metal at the molecular level. Resulting in higher resistance to heat warpage, cracking, greater brake co-efficiency and longer Rotor life

Our tests have proven to extend the life of your rotors and pads by 200% and increase performance by 20%. What does this mean to you?.. Longer life, a reduction in maintenance and labor costs as well as down time by at least 50%!

Attention: Race teams, weekend warriors and performance junkies - We have had Awesome results with our Cryogenic Thermal Cycling Process in motor sports applications. Significant performance gains have been noticed in treated rotors. Rotor warpage and vibration has been greatly reduced, Braking efficiency improves and leads to smoother more consistent braking keeping rotors cooler.

Please contact us with all your performance needs and check our Engine Components page to see how we can help out under the hood as well.

We also specialise in bulk orders, for teams, public service and fleet vehicles so please contact us about our volume pricing.

 

The following article "Cryogenics" the Racers Edge appeared in Heat Treat Process Magazine published by the American Society of Materials.  

 

 

Cryogenics

The effects are an eye opener:

 

By Roger Schiradelly and Fredrick Diekman.

 

Racing pushes engine and drive train components to the absolute limits of their durability. Extending those limits means more speed, better safety, and more races won.  For this reason Cryogenic processing is becoming a necessary part of the manufacturing process for racing components.  This racing experience will serve as an example to manufacturing industries---now similarly engaged in there own competition against manufacturing costs and waste, and the challenge to provide high quality products with superior performance. 

 

Using extremely low temperatures to make permanent changes in metal and plastic components, cryogenic processing is not the typical 84 degrees C (-120 degrees F) cold treatment most heat treaters use.  It essentially involves exposing materials to temperatures below 184 degrees C (-300 degrees F).  If done correctly, it creates a permanent change to the material that alters many wear characteristics.

 

The concept of changing metal through the use of low temperatures is relatively new and not well understood.  Yet it is certain that exposure to very low temperatures does make permanent changes in virtually all metals and to some plastics.  Observed changes include:

 

  • Increased resistance to abrasion

  • Increased resistance to fatigue

  • Precipitation of very fine carbides in ferrous metals that contain carbide forming elements.

  • Transformation of austenite to martensite in ferrous metals.

  • Change in vibrational damping.

  • Increased electrical conductivity.

  • Anecdotal evidence of changes in heat transfer.

  • Stabilization of metals to reduce warping under heat, stress, and vibration.

In practice, cryogenic processing affects the entire mass of the part. It is not a coating.  This means that parts can be machined after treatment without losing the benefit of the process.  Additionally, cryogenics apply to metals in general, not just ferrous metals.  For many years, it was assumed the only change caused by extreme cold was the transformation of retained austenite to martensite in steel and iron.  Because of this, many misinformed engineers still believe that cryogenic processing is "just a fix for bad heat treat".  It is now known that cryogenic processing has a definite affect on copper, titanium, carbide, silver, brass, bronze, aluminum, both austenitic and martensitic stainless steel, mild steel and others.  It is also known that plastics such as nylon and phenolics show property changes.

 

Racing applications:

Cryogenic processing is currently in use in every form of racing imaginable. It is used in virtually every class of NASCAR racing, IRL, CART, NHRA, IHRA, SCCA, IMSA and ARCA, not to mention tractor pulls, go-karts, motorcycles, boats, and even lawn mower racing.  Controlled Thermal Processing (CTP) has even done a fair number of axles for soap- box derby cars.  Over half of the cars competing at any given NASCAR Winston Cup race run parts that are cryogenically treated by CTP alone.  Cryogenic processing can have a positive affect on virtually every engine, transmission, and drive line part, as well as many chassis parts. 

 

Are there definite tests and data on racing and cryogenic processing that we can point you to?  Not yet. Racers do most of their testing on the race- track or on the dynamometer.  These are not controlled experiments in the classical sense, and in most cases they do not allow the results to be published because of the risk of losing competitive advantages.  We do know that the use of cryogenic processing is on the upswing.  Its use by manufacturers of racing components has been growing sharply.  We also know that very experienced racing experts have examined the effects of cryogenic processing and have been very impressed.

 

Increasing the durability of components in the vehicles is the main reason for using cryogenic processing.  Racing continually presents the engineer with the challenge of designing engine and chassis components that will survive long enough to win a race, but will not have any excess weight as a consequence.  Put in too much mass, and a car will be slow and handle poorly.  Make components too light, and they will not survive the race.  There is always this delicate balance: weight versus reliability.  The great thing about cryogenic processing is that it allows an increase in durability without an increase in weight or major modifications to component design.  In addition, the use of cryogenic processing has helped some racing teams reduce costs, enabling some expensive parts to survive the stresses of racing for use in subsequent races.

   

Performance advantages:

Cryogenic processing has become an integral part of the production process for many racing components.  Many top racing teams have the process done if the manufacturer does not provide it.  They do so because cryogenic processing has proven its worth time and again under extremely competitive conditions.  Racers are generally people in a big hurry and would not take the time for cryogenic processing if there was no advantage to it.  Applications that benefit from cryogenic treatment probably number more than anyone expects. 

 

Brakes and Clutches:

Brakes of a racing car take a real beating.  It is not unusual for a racing vehicle to finish a race with the brakes totally worn out.  This is especially true during road races and endurance racing, where brake rotors can get so hot they glow visibly at night.  Cryogenic processing can be applied to both rotors and pads.  The net result is two to three times the life of untreated components even under severe racing conditions.  As a side benefit, the rotors are less prone to crack or warp.  It is interesting that drivers report better braking action and feel.  Some drivers are so sold on the concept that they have their street vehicles equipped with treated brakes.

 

Clutches are a form of brake, and the results are very similar.  Drag racers have been doing some work on clutch plates to measure the coefficient of friction in highly instrumented cars.  They find that treated clutch facings will develop a higher coefficient of friction but exhibit significantly less wear. 

 

As an offshoot of racing development, cryogenically treated rotors and pads are making their way into fleet operations on the road.  The U.S. postal service specifies cryogenic processing for their rotors and is experiencing up to three times as many miles as they were getting on the unprocessed rotors.  Similarly, many police fleets are starting to adopt treating rotors and pads. They, too, are experiencing large maintenance savings on both parts and labor.  What is metallurgically interesting is that the brakes are a gray cast iron that has a pearlitic structure.  This rules out the austenite to martensite transformation as the mechanism for increase life.

 

Springs:

Not unexpectedly, chassis springs are also affected by cryogenic processing.  Chassis springs lose their spring constant during a race.  This can cause the chassis to lose its cornering ability, which drastically slows the car.  Loss of spring constant also alters the height or road clearance of the vehicle.  The vehicle height is critical at high speeds because it has a big affect on the aerodynamics of the car, and hence on the handling and the top speed of the car.

 

Further advantage for cryogenic processing of springs is that the process seems to eliminate or reduce harmonic vibrations.  If you have ever seen a high-speed movie of a valve spring at high engine rpm, you will notice that the springs do not simply move up and down.  It does a very complex hula dance because of the harmonic vibrations.  Racers typically have to design the spring and valve trains so that harmonics do not interfere with the valve action.

 

Cryogenic processing of springs will usually triple the life before fatigue failure occurs, and it will reduce the amount of spring constant lost from 20-30% down to about 7%.  This makes it easier to set up the engine, as there is not such a wide variation in the spring performance.  It is difficult to determine absolute spring life increases, because the racers typically discard them long before they break.  We do no one drag racer who use to change springs after each run: He now makes seven runs before changes.  

 

There is a Caveat.

Occasionally we come across groups of springs that will not respond to cryogenics.  Analysis of these springs usually discloses large inclusions in the wire, which become stress concentrators, causing failures at these locations.

 

Interested? 

Call us for your FREE trial of the COLDfire process

5 Rapid Street, Riverside Industrial Park, Nelspruit 1200, South Africa
PO Box 2063 Nelspruit, 1200, South Africa
Tel: 013 7524349 - Fax: 013 75 33468 - Tel: 0861 - COLDfire
www.coldfire.co.za - email info@coldfire.co.za
 
Call us on  0861 - COLDFIRE
(South Africa Only - Standard Telkom Rates Apply)